Abstract:
We formulate the induced potential in a finite temperature cold atomic medium between two heavy impurities, or polarons, which is shown to be \textit{complex-valued} in general. The imaginary part of the complex-valued potential describes a decoherence effect, and thus, the resulting Schrödinger equation for the two polarons acquires a non-Hermitian term. We apply the developed formulation to two representative cases of polarons interacting with medium particles through the s-wave contact interaction: (i) the normal phase of single-component (i.e., spin-polarized) fermions using the fermionic field theory, and (ii) a superfluid phase using the superfluid effective field theory, which is valid either for a Bose-Einstein condensate (BEC) of a single-component Bose gas or for the BEC-BCS crossover in two-component fermions at a low-energy regime. Computing the leading-order term, the imaginary part of the potential in both cases is found to show a universal r−2 behavior at long distance. We propose three experimental ways to observe the effects of the universal imaginary potential in cold atoms.
Y. Akamatsu, S. Endo, K. Fujii, M. Hongo, “Complex-valued in-medium potential between heavy impurities in ultracold atoms”, Dec. 13, 2023, arXiv:2312 . 08241 (2023).
https://arxiv.org/abs/2312.08241
Related to Project C02, C03