Abstract:

Reliably computing the free energy in a gauge theory like QCD is a challenging and resource-demanding endeavor. We explore the possibility to obtain the associated thermodynamic anomaly from two-point functions based on a conjectured relation. This conjecture is triggered by the relation to the Tan contact in condensed matter systems. For this investigation we use state-of-the-art results for the Yang-Mills gluon two-point function from the lattice and the functional renormalization group, as well as novel Dyson-Schwinger results at finite temperature computed in the present work. This allows for a first, qualitative, test of this conjecture. The results from all methods reveal the same nontrivial temperature behavior of the subleading large momentum dependence of the gluon propagator relevant for the conjectured relation. The comparison with the expected behavior for SU(2) Yang-Mills theory is encouraging to further pursue this approach.

O. Hajizadeh, M. Q. Huber, A. Maas, J. M. Pawlowski, “Exploring the Tan contact term in Yang-Mills theory”, Phys. Rev. D 103, 034023 (2021).

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.034023

Related to Project A02, B03, C01, C05, C06