We theoretically investigate the impact of weak perturbations of a flat potential on the density of a quasi-two-dimensional dipolar Bose gas. We use a mean-field perturbative treatment of the potential defects and derive their effects at first order in the mean-field stable regime. We first focus on defects containing a single spatial frequency and study the wavevector dependence of the density perturbation. A qualitative modification of the wavenumber dependence with the interaction parameters and a sensitivity in the excitation direction reveal the long-range and anisotropic dipolar effects. These effects are found to be most important at intermediate wavenumbers and can give rise to a local maximum in the density perturbation reminiscent of the roton mode softening and local instabilities. The dependence on the gas and interaction parameters is studied. The case of a flat potential perturbed with white noise on a certain momentum range is then examined. Here it is found that the strength perturbation becomes independent of the mean density when sufficiently large. Our study touches upon experimentally relevant issues, giving hints on how flat a uniform potential should be to achieve uniform quasi-two-dimensional dipolar Bose gases.

T. Bourgeois, L. Chomaz, „How is the density of quasi-two-dimensional uniform dipolar quantum
Bose gases affected by trap imperfections?“, 7. März 2024, arXiv:2403.04719 (2024).


Related to Project C03