The forthcoming generation of multi-petawatt lasers opens the way to abundant pair production by the nonlinear Breit-Wheeler process, i.e., the decay of a photon into an electron-positron pair inside an intense laser field. In this paper we explore the optimal conditions for Breit-Wheeler pair production in the head-on collision of a laser pulse with gamma photons. The role of the laser peak intensity versus the focal spot size and shape is examined keeping a constant laser energy to match experimental constraints. A simple model for the soft-shower case, where most pairs originate from the decay of the initial gamma photons, is derived. This approach provides us with a semi-analytical model for more complex situations involving either Gaussian or Laguerre-Gauss (LG) laser beams. We then explore the influence of the order of the LG beams on pair creation. Finally we obtain the result that, above a given threshold, a larger spot size (or a higher order in the case of LG laser beams) is more favorable than a higher peak intensity. Our results match very well with three-dimensional particle-in-cell simulations and can be used to guide upcoming experimental campaigns.

A. Mercuri-Baron, M. Grech, F. Niel, A. Grassi, M. Lobet, A. Di Piazza, C. Riconda, “Impact of the laser spatio-temporal shape on Breit-Wheeler pair production”, arXiv:2105.12458 (2021).


Related to Project B02