We present the first direct and nonperturbative computation of the graviton spectral function in quantum gravity. This is achieved with the help of a novel Lorentzian renormalization group approach, combined with a spectral representation of correlation functions. We find a positive graviton spectral function, showing a massless one-graviton peak and a multigraviton continuum with an asymptotically safe scaling for large spectral values. We also study the impact of a cosmological constant. Further steps to investigate scattering processes and unitarity in asymptotically safe quantum gravity are indicated.

J. Fehre, D. F. Litim, J. M. Pawlowski, M. Reichert, “Lorentzian Quantum Gravity and the Graviton Spectral Function”, Phys.Rev.Lett. 130 (2023).


Related to Project A02