Abstract:
Many-body physics describes phenomena which cannot be understood looking at a systems’ constituents alone. Striking manifestations are broken symmetry, phase transitions, and collective excitations. Understanding how such collective behaviour emerges when assembling a system from individual particles has been a vision in atomic, nuclear, and solid-state physics for decades. Here, we observe the few-body precursor of a quantum phase transition from a normal to a superfluid phase. The transition is signalled by the softening of the mode associated with amplitude vibrations of the order parameter, commonly referred to as a Higgs mode. We achieve exquisite control over ultracold fermions confined to two-dimensional harmonic potentials and prepare closed-shell configurations of 2, 6 and 12 fermionic atoms in the ground state with high fidelity. Spectroscopy is then performed on our mesoscopic system while tuning the pair energy from zero to being larger than the shell spacing. Using full atom counting statistics, we find the lowest resonance to consist of coherently excited pairs only. The distinct non-monotonic interaction dependence of this many-body excitation as well as comparison with numerical calculations allows us to identify it as the precursor of the Higgs mode. Our atomic simulator opens new pathways to systematically unravel the emergence of collective phenomena and the thermodynamic limit particle by particle.
L. Bayha, M. Holten, R. Klemt, K. Subramanian, J. Bjerlin, S. M. Reimann, G. M. Bruun, P. M. Preiss, and S. Jochim, “Observing the emergence of a quantum phase transition – shell by shell”, Nature 587, 583 -587 (2020)
https://www.nature.com/articles/s41586-020-2936-y
Related to Project C01, C02